Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Chemistry»Bionanomachine Breakthrough: A Master Key for Sustainable Chemistry
    Chemistry

    Bionanomachine Breakthrough: A Master Key for Sustainable Chemistry

    By Brigitte Osterath, Paul Scherrer InstituteMay 14, 20241 Comment4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Chemistry Molecule Energy Concept
    Researchers have detailed the structure and function of the enzyme styrene oxide isomerase, a tool that enables green chemistry by facilitating the biological equivalent of the Meinwald reaction. This enzyme’s ability to produce specific products with high efficiency and stereospecificity holds significant potential for the chemical and pharmaceutical industries, promising more sustainable and environmentally friendly processes. (Artist’s concept.) Credit: SciTechDaily.com

    For the first time, scientists have precisely characterized the enzyme styrene oxide isomerase, which can be used to produce valuable chemicals and drug precursors in an environmentally friendly manner. The study appears today in the journal Nature Chemistry.

    Enzymes are powerful biomolecules that can be used to produce many substances at ambient conditions. They enable “green” chemistry, which reduces environmental pollution resulting from processes used in synthetic chemistry. One such tool from nature has now been characterized in detail by researchers at the Paul Scherrer Institute (PSI): the enzyme styrene oxide isomerase. It is the biological version of the Meinwald reaction, an important chemical reaction in organic chemistry.

    “The enzyme, discovered decades ago, is made by bacteria,” says Richard Kammerer of PSI’s Biomolecular Research Laboratory. His colleague Xiaodan Li adds: “But because the way it functions was not known, its practical application has been limited up to now.” The two researchers and their team have elucidated the structure of the enzyme as well as the way it works.

    Simple Mechanism for a Complicated Reaction

    Microorganisms possess specific enzymes with which they can, for example, break down harmful substances and use them as nutrients. Styrene oxide isomerase is one of these. Together with two other enzymes, it enables certain environmental bacteria to grow on the hydrocarbon styrene.

    The styrene oxide isomerase catalyzes a very specific step in the reaction: it splits a three-membered ring in the styrene oxide consisting of one oxygen and two carbon atoms, a so-called epoxide. Thereby the enzyme is highly specific and creates only one product. It is also capable of converting a number of additional substances, producing important precursors for medical applications.

    Xiaodan Li and Richard Kammerer
    Xiaodan Li and Richard Kammerer have characterized an enzyme for the first time that could become an important tool for the circular economy. The monitor shows a schematic representation of the key part of the active center of this enzyme. Credit: Paul Scherrer Institute/Markus Fischer

    One particular advantage has to do with the fact that in many chemical reactions, both an image and a mirror image of a chemical compound are formed, which may have completely different biological effects. But this enzyme specifically creates only one of the two products. In chemistry this property is called stereospecificity – it is particularly important for the generation of precursor molecules for drugs. “The enzyme is an impressive example of how nature makes chemical reactions possible in a simple and ingenious way,” Xiaodan Li says.

    Extremely Useful in Chemical and Pharmaceutical Industries

    In the course of their investigations, which they conducted in part at the Swiss Light Source SLS, the PSI researchers discovered the enzyme’s secret: an iron-containing group in its interior, similar to the iron-containing pigment in our red blood cells. This haem group binds the epoxide ring, and that’s how it makes the reaction so simple and efficient. Other parts of the investigations were carried out by the group of Volodymyr Korkhov, also from the PSI Laboratory for Biomolecular Research and Associate Professor in the Department of Biology at ETH Zurich, using cryo-electron microscopy.

    Xiaodan Li and Richard Kammerer feel certain that the enzyme will prove extremely useful in the chemical and pharmaceutical industries. “It is so far the only bacterial enzyme known to catalyze the Meinwald reaction,” Richard Kammerer emphasizes. With the enzyme’s help, industry could produce precursors for drugs and important chemicals under energy-saving and environmentally friendly conditions.

    Xiaodan Li adds: “The enzyme could potentially be altered so that it can produce a great many new substances.” In addition, the enzyme is very stable and thus is suitable for large-scale industrial applications. “It will certainly become a new, important tool for the circular economy and green chemistry,” the PSI researchers are convinced.

    Reference: “Structural basis of the Meinwald rearrangement catalysed by styrene oxide isomerase” by Basavraj Khanppnavar, Joel P. S. Choo, Peter-Leon Hagedoorn, Grigory Smolentsev, Saša Štefanić, Selvapravin Kumaran, Dirk Tischler, Fritz K. Winkler, Volodymyr M. Korkhov, Zhi Li, Richard A. Kammerer and Xiaodan Li, 14 May 2024, Nature Chemistry.
    DOI: 10.1038/s41557-024-01523-y

    Catalysts Chemical Engineering Enzyme Organic Chemistry Paul Scherrer Institute Sustainability
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Breakthrough Enzyme Discovery Could Make Widely Used Plastic Polystyrene Biodegradable

    Revolutionizing Organic Chemistry: Boronic Acid-Powered Enzyme Yields Groundbreaking Catalysis

    Cheaper, Faster New Way To Continuously Produce Amines – Chemical Building Blocks Used in Many Products

    New Environmentally-Friendly Method Developed for Removing Toxic Chemicals From Water

    More Efficient, Environmentally Friendly Ethylene Production With New Catalyst

    Atomic Layer Deposition Scaled Up to Large Surfaces With Lower Costs

    Chemists Discover a New Way to Work with Heterogeneous Catalysts

    Fungal Enzymes Could Potential Convert Wood Biomass Into Biofuels

    New Nanoparticle Catalysts Improve Reactivity with Much Less Platinum

    1 Comment

    1. Warren on May 21, 2024 11:52 pm

      Thank you so much scitech for sharing this kind of information which is very informative.Again Than you.

      Reply
    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.