Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Space»Rethinking the Cosmos: Hunt for Luminous Galaxies Could Upend Dark Matter Theories
    Space

    Rethinking the Cosmos: Hunt for Luminous Galaxies Could Upend Dark Matter Theories

    By University of California - Los AngelesMarch 12, 2024No Comments6 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Abstract Dark Matter Mystery Astrophysics
    UCLA astrophysicists have used new simulations to uncover that the earliest galaxies may have been smaller and brighter than previously believed, challenging current dark matter theories. By incorporating interactions between gas and dark matter, their research suggests that these bright dwarf galaxies, if found by the James Webb Space Telescope, could validate existing models. However, their absence would prompt a reevaluation of our understanding of dark matter and the universe’s formation.

    Should theories of cold dark matter hold true, the Webb Space Telescope should discover tiny, bright galaxies of early universe

    For the past year and a half, the James Webb Space Telescope has delivered astonishing images of distant galaxies formed not long after the Big Bang, giving scientists their first glimpses of the infant universe. Now, a group of astrophysicists has upped the ante: Find the tiniest, brightest galaxies near the beginning of time itself, or scientists will have to totally rethink their theories about dark matter.

    The team, led by UCLA astrophysicists, ran simulations that tracked the formation of small galaxies after the Big Bang and included, for the first time, previously neglected interactions between gas and dark matter. They found that the galaxies created are very tiny, much brighter, and form more quickly than they do in typical simulations that don’t take these interactions into account, instead revealing much fainter galaxies.

    The Importance of Dwarf Galaxies in Cosmic Studies

    Small galaxies, also called dwarf galaxies, are present throughout the universe, and are often thought to represent the earliest type of galaxy. Small galaxies are thus especially interesting to scientists studying the origins of the universe. But the small galaxies they find don’t always match what they think they should find. Those closest to the Milky Way spin quicker or are not as dense as in simulations, indicating that the models might have omitted something, such as these gas-dark matter interactions.

    The new research, published in The Astrophysical Journal Letters, improves the simulations by adding dark matter interactions with gas and finds that these faint galaxies may have been much brighter than expected early in the universe’s history, when they were just beginning to form. The authors suggest scientists should try to find small galaxies that are much brighter than expected using telescopes like the Webb telescope. If they only find faint ones, then some of their ideas about dark matter might be wrong.

    Stephan's Quintet Webb
    A composite of Stephan’s Quintet, a visual grouping of five galaxies, constructed from almost 1,000 separate image files from the James Webb Space Telescope. UCLA astrophysicists believe if cold dark matter theories are correct, the Webb telescope should find tiny, bright galaxies of the early universe. Credit: NASA, ESA, CSA, STScI

    The Elusive Nature of Dark Matter

    Dark matter is a type of hypothetical matter that does not interact with electromagnetism or light. Thus, it is impossible to observe using optics, electricity, or magnetism. But dark matter does interact with gravity, and its presence has been inferred from the gravitational effects it has on ordinary matter — the stuff that makes up all the observable universe. Even though 84% of the matter in the universe is thought to be made of dark matter, it has never been detected directly.

    All galaxies are surrounded by a vast halo of dark matter, and scientists think that dark matter was essential to their formation. The “standard cosmological model” astrophysicists use to understand galaxy formation describes how clumps of dark matter in the very early universe drew in ordinary matter through gravity, causing the formation of stars and creating the galaxies we see today. Because most dark matter particles — called cold dark matter —are thought to move much slower than the speed of light, this process of accumulation would have occurred gradually.

    Theoretical Advances in Understanding Galaxy Formation

    But over 13 billion years ago, prior to the formation of the first galaxies, ordinary matter, consisting of hydrogen and helium gas from the Big Bang, and dark matter were moving relative to one another. The gas streamed at supersonic velocities past dense thickets of more slowly moving dark matter that should have pulled it in to form galaxies.

    “Indeed, in models that do not take streaming into account, this is exactly what happens,” said Claire Williams, a UCLA doctoral student and the paper’s first author. “Gas is attracted to the gravitational pull of dark matter, forms clumps and knots so dense that hydrogen fusion can occur, and thus forms stars like our sun.”

    But Williams and co-authors on the Supersonic Project team, a group of astrophysicists from the United States, Italy, and Japan led by UCLA physics and astronomy professor Smadar Naoz, found if they added the streaming effect of different velocities between dark and ordinary matter to the simulations, the gas landed far away from the dark matter and was prevented from forming stars right away. When the accumulated gas fell back into the galaxy millions of years later, a massive burst of star formation occurred all at once. Because these galaxies had many more young, hot, luminous stars than ordinary small galaxies for a time, they shone much brighter.

    “While the streaming suppressed star formation in the smallest galaxies, it also boosted star formation in dwarf galaxies, causing them to outshine the non-streaming patches of the universe,” Williams said. “We predict that the Webb telescope will be able to find regions of the universe where galaxies will be brighter, heightened by this velocity. The fact that they should be so bright might make it easier for the telescope to discover these small galaxies, which are typically extremely hard to detect only 375 million years after the Big Bang.”

    Because dark matter is impossible to study directly, searching for bright patches of galaxies in the early universe could offer an effective test for theories about dark matter, which has been fruitless so far.

    “The discovery of patches of small, bright galaxies in the early universe would confirm that we are on the right track with the cold dark matter model because only the velocity between two kinds of matter can produce the type of galaxy we’re looking for,” said Naoz, the Howard and Astrid Preston Professor of Astrophysics. “If dark matter does not behave like standard cold dark matter and the streaming effect isn’t present, then these bright dwarf galaxies won’t be found and we need to go back to the drawing board.”

    Reference: “The Supersonic Project: Lighting Up the Faint End of the JWST UV Luminosity Function” by Claire E. Williams, William Lake, Smadar Naoz, Blakesley Burkhart, Tommaso Treu, Federico Marinacci, Yurina Nakazato, Mark Vogelsberger, Naoki Yoshida, Gen Chiaki, Yeou S. Chiou and Avi Chen, 8 January 2024, The Astrophysical Journal Letters.
    DOI: 10.3847/2041-8213/ad1491

    The research was supported by the National Science Foundation and NASA.

    Astronomy Astrophysics Dark Matter Galaxy James Webb Space Telescope UCLA
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Unveiling the Cosmos: Maisie’s Galaxy Confirmed as One of the Universe’s Oldest

    Powered by Dark Matter: Webb Space Telescope Catches Glimpse of Possible First-Ever “Dark Stars”

    Astrophysicists Spot a Cosmic Whisper: The Faintest Galaxy in the Early Universe

    The Earliest Quiescent – Researchers Reveal Traits of Ancient Galaxy 25 Billion Light-Years Away

    Researchers Measure Size-Luminosity Relation of Galaxies Less Than a Billion Years After Big Bang

    Remarkable Similarities – New Analysis Reveals Links Between Galaxies Near and Far

    Astronomers Suggest More Galaxies Were Formed in the Early Universe Than Previously Thought

    Webb Space Telescope Reveals Breathtaking Cosmic Fireballs – How Universe Became Transparent

    Mapping the Universe’s Earliest Structures and Dark Matter Distribution With COSMOS-Webb

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Curiosity’s Wild Ride: How the Sky Crane Changed the Way NASA Explores Mars
    • Banana Apocalypse: Can Biologists Outsmart the Silent Killer?
    • Scientists Uncover Hidden Mechanism Behind Opioid Addiction – Discovery Could Revolutionize Addiction Treatment
    • How Sonic Technology Is Advancing Wind Detection on Mars
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.