Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Noodle-Like Robots Navigate Mazes Without Human or Computer Guidance
    Technology

    Noodle-Like Robots Navigate Mazes Without Human or Computer Guidance

    By North Carolina State UniversityMay 23, 2022No Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Noodle-Like Robots
    Researchers have developed soft robots that are capable of navigating complex environments, such as mazes, without input from humans or computer software. The soft robots are made of liquid crystal elastomers in the shape of a twisted ribbon, resembling translucent versions of rotini pasta. Credit: Yao Zhao, NC State University

    Researchers from North Carolina State University (NCSU) and the University of Pennsylvania (Penn) have developed soft robots that are capable of navigating complex environments, such as mazes, without input from humans or computer software.

    “These soft robots demonstrate a concept called ‘physical intelligence,’ meaning that structural design and smart materials are what allow the soft robot to navigate various situations, as opposed to computational intelligence,” says Jie Yin, corresponding author of a paper on the work and an associate professor of mechanical and aerospace engineering at NC State.

    The soft robots are made of liquid crystal elastomers in the shape of a twisted ribbon, resembling the pasta rotini, except translucent. When you place the ribbon on a surface that is at least 55 degrees Celsius (131 degrees Fahrenheit), which is hotter than the ambient air, the portion of the ribbon touching the surface contracts, while the portion of the ribbon exposed to the air does not. This induces a rolling motion in the ribbon. And the warmer the surface, the faster it rolls.


    A collaborative research team from NCSU and Penn has recently developed an autonomous and intelligent twisted soft robot that can self-escape from simple maze-like obstacle courses without any external control and human interventions. The soft robot is made of heat-responsive liquid crystal elastomers with its soft body resembling a translucent rotini. When encountering obstacles, it utilizes the embodied physical intelligence of self-snapping and self-turning for autonomous obstacle negotiation and avoidance. They also show that the robot can self-roll on hot loose sand dunes without getting stuck and slipping, as well as cross hot rocks. It can also harvest thermal energy from environments for self-powered rolling on a car roof and BBQ grills.

    “This has been done before with smooth-sided rods, but that shape has a drawback – when it encounters an object, it simply spins in place,” says Yin. “The soft robot we’ve made in a twisted ribbon shape is capable of negotiating these obstacles with no human or computer intervention whatsoever.”

    The ribbon robot does this in two ways. First, if one end of the ribbon encounters an object, the ribbon rotates slightly to get around the obstacle. Second, if the central part of the robot encounters an object, it “snaps.” The snap is a rapid release of stored deformation energy that causes the ribbon to jump slightly and reorient itself before landing. The ribbon may need to snap more than once before finding an orientation that allows it to negotiate the obstacle, but ultimately it always finds a clear path forward.

    “In this sense, it’s much like the robotic vacuums that many people use in their homes,” Yin says. “Except the soft robot we’ve created draws energy from its environment and operates without any computer programming.”

    “The two actions, rotating and snapping, that allow the robot to negotiate obstacles operate on a gradient,” says Yao Zhao, first author of the paper and a postdoctoral researcher at NC State. “The most powerful snap occurs if an object touches the center of the ribbon. But the ribbon will still snap if an object touches the ribbon away from the center, it’s just less powerful. And the further you are from the center, the less pronounced the snap, until you reach the last fifth of the ribbon’s length, which does not produce a snap at all.”

    The researchers conducted multiple experiments demonstrating that the ribbon-like soft robot is capable of navigating a variety of maze-like environments. The researchers also demonstrated that the soft robots would work well in desert environments, showing they were capable of climbing and descending slopes of loose sand.

    “This is interesting, and fun to look at, but more importantly it provides new insights into how we can design soft robots that are capable of harvesting heat energy from natural environments and autonomously negotiating complex, unstructured settings such as roads and harsh deserts,” Yin says.

    Reference: “Twisting for Soft Intelligent Autonomous Robot in Unstructured Environments” by Yao Zhao, Yinding Chi, Yaoye Hong, Yanbin Li, Shu Yang and Jie Yin, 23 May 2022, Proceedings of the National Academy of Sciences.
    DOI: 10.1073/pnas.2200265119

    The paper will be published the week of May 23 in the Proceedings of the National Academy of Sciences. The paper was co-authored by NC State Ph.D. students Yinding Chi, Yaoye Hong and Yanbin Li; as well as Shu Yang, the Joseph Bordogna Professor of Materials Science and Engineering at the University of Pennsylvania.

    The work was done with support from the National Science Foundation, under grants CMMI-431 2010717, CMMI-2005374 and DMR-1410253.

    Materials Science North Carolina State University Robotics
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Researchers Develop Shape-Programmable Miniscule Robots

    New Drug Delivery Technique Uses Graphene to Deliver Anticancer Drugs

    Researchers Discover a Simple Way to Increase Solar Cell Efficiency

    Aligned Carbon Nanotube-Silicon Sheets Improve Battery Design

    Needle-Like Carbon Nanofibers May Aid in New Drug Delivery Systems

    Robotic Tentacles Have a Soft Enough Touch to Pick Up Flowers

    Light Activated Muscle Cells May Advance Biorobotics

    Nano-Sandwich Design Results in Slimmer Solar Cells With Decreased Costs

    Elastomeric “Soft” Robots Running on Pneumatic Actuators

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.