Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»Unleashing the Power of Memristors in High-Precision Computing
    Technology

    Unleashing the Power of Memristors in High-Precision Computing

    By University of Massachusetts AmherstApril 1, 2024No Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email
    Memristor Crossbar Array Chips
    An exemplar photograph of an integrated chip containing memristor crossbar arrays of various sizes made at UMass Amherst. Credit: Can Li

    UMass Amherst research demonstrates that a memristor device can solve complex scientific problems using significantly less energy, overcoming one of the major hurdles of digital computing.

    A team of researchers including University of Massachusetts Amherst engineers have proven that their analog computing device, called a memristor, can complete complex, scientific computing tasks while bypassing the limitations of digital computing.

    Tackling Modern Computing Challenges

    Many of today’s important scientific questions—from nanoscale material modeling to large-scale climate science—can be explored using complex equations. However, today’s digital computing systems are reaching their limit for performing these computations in terms of speed, energy consumption, and infrastructure.

    Qiangfei Xia, UMass Amherst professor of electrical and computer engineering, and one of the corresponding authors of the research published in the journal Science, explains that, with current computing methods, every time you want to store information or give a computer a task, it requires moving data between memory and computing units. With complex tasks moving larger amounts of data, you essentially get a processing “traffic jam” of sorts.

    Revolutionizing Computing With Memristor Technology

    One way traditional computing has aimed to solve this is by increasing bandwidth. Instead, Xia and his colleagues at UMass Amherst, the University of Southern California, and computing technology maker, TetraMem Inc. have implemented in-memory computing with analog memristor technology as an alternative that can avoid these bottlenecks by reducing the number of data transfers.

    The team’s in-memory computing relies on an electrical component called a memristor—a combination of memory and resistor (which controls the flow of electricity in a circuit). A memristor controls the flow of electrical current in a circuit, while also “remembering” the prior state, even when the power is turned off, unlike today’s transistor-based computer chips, which can only hold information while there is power. The memristor device can be programmed into multiple resistance levels, increasing the information density in one cell.

    Enhancing Computational Efficiency

    When organized into a crossbar array, such a memristive circuit does analog computing by using physical laws in a massively parallel fashion, substantially accelerating matrix operation, the most frequently used but very power-hungry computation in neural networks. The computing is performed at the site of the device, rather than moving the data between memory and processing. Using the traffic analogy, Xia compares in-memory computing to the nearly empty roads seen at the height of the pandemic: “You eliminated traffic because [nearly] everybody worked from home,” he says. “We work simultaneously, but we only send the important data/results out.”

    Previously, these researchers demonstrated that their memristor can complete low-precision computing tasks, like machine learning. Other applications have included analog signal processing, radiofrequency sensing, and hardware security.

    Breakthrough in High-Precision Computing

    “In this work, we propose and demonstrate a new circuit architecture and programming protocol that can efficiently represent high-precision numbers using a weighted sum of multiple, relatively low-precision analog devices, such as memristors, with a greatly reduced overhead in circuitry, energy and latency compared with existing quantization approaches,” says Xia.

    “The breakthrough for this particular paper is that we push the boundary further,” he adds. “This technology is not only good for low-precision, neural network computing, but it can also be good for high-precision, scientific computing.”

    For the proof-of-principle demonstration, the memristor solved static and time-evolving partial differential equations, Navier-Stokes equations, and magnetohydrodynamics problems.

    “We pushed ourselves out of our own comfort zone,” he says, expanding beyond the low-precision requirements of edge computing neural networks to high-precision scientific computing.

    It took over a decade for the UMass Amherst team and collaborators to design a proper memristor device and build sizeable circuits and computer chips for analog in-memory computing. “Our research in the past decade has made analog memristor a viable technology. It is time to move such a great technology into the semiconductor industry to benefit the broad AI hardware community,” Xia says.

    Reference: “Programming memristor arrays with arbitrarily high precision for analog computing” by Wenhao Song, Mingyi Rao, Yunning Li, Can Li, Ye Zhuo, Fuxi Cai, Mingche Wu, Wenbo Yin, Zongze Li, Qiang Wei, Sangsoo Lee, Hengfang Zhu, Lei Gong, Mark Barnell, Qing Wu, Peter A. Beerel, Mike Shuo-Wei Chen, Ning Ge, Miao Hu, Qiangfei Xia and J. Joshua Yang, 22 February 2024, Science.
    DOI: 10.1126/science.adi9405

    Electrical Engineering Electronics University of Massachusetts Amherst
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Efficient AI Ahead: USC’s Memristor Breakthrough Transforms Analog Computing

    Quantum Films Pave the Way for High-Speed Terahertz Electronics

    Bridging Realms: Unveiling the Future of Electronics at Terahertz Speeds

    Revolutionizing Computing: Inside Princeton’s Trailblazing AI Chip Technology

    Approaching 1,000 km on a Single Charge – Scientists Discover Secret Ingredient That Can Boost EV Range

    Atoms Under Pressure: The Dawn of Ultra-Efficient Computing Memory

    Unique New Material Could Generate More Computing Power and Memory Storage While Using Significantly Less Energy

    Innovative New Magneto-Electric Transistor Could Cut 5% From World’s Digital Energy Budget

    Self-Sustaining, Intelligent, Electronic Microsystems Created – Operate Much Like Self-Autonomous Living Organisms

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Could Perseverance’s Mars Samples Hold the Secret to Ancient Life?

    Giant Fossil Discovery in Namibia Challenges Long-Held Evolutionary Theories

    Is There Anybody Out There? The Hunt for Life in Cosmic Oceans

    Paleontological Surprise: New Research Indicates That T. rex Was Much Larger Than Previously Thought

    Photosynthesis-Free: Scientists Discover Remarkable Plant That Steals Nutrients To Survive

    A Waste of Money: New Study Reveals That CBD Is Ineffective for Pain Relief

    Two Mile Long X-Ray Laser Opens New Windows Into a Mysterious State of Matter

    650 Feet High: The Megatsunami That Rocked Greenland’s East Coast

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Harnessing Blue Energy: The Sustainable Power Source of Tomorrow
    • Mystery Solved: Scientists Discover Unique Evolutionary Branch of Snakes
    • Unlocking the Deep Past: New Study Maps the Dawn of Animal Life
    • Scientists Uncover How Cocaine Tricks the Brain Into Feeling Good – Breakthrough Could Lead to New Substance Abuse Treatments
    • Scientists Sound the Alarm: Record Ocean Heat Puts the Great Barrier Reef in Danger
    Copyright © 1998 - 2024 SciTechDaily. All Rights Reserved.
    • Latest News
    • Trending News
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.